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1. Introduction

Throughout this paper, X denotes an infinite-
dimensional complex Banach space and B(X),
the algebra of all bounded linear operators on X.

for T e B(X), let T* , N(T), R(T), o(T) and oa(T)
denote the adjoint, null space, the range, the
spectrum and approximate point spectrum of T ,
respectively.

Ifa(T) :=dimker T < «and R(T) is closed then T
€ B(X) is said to be upper semi-Fredholm
operator while T € B(X) is lower semi-Fredholm
if B(T) := codim R(T) < ». The index of semi-
Fredholm operator is defined as ind T :=a(T) — B

(T). An operator T € B(X) is said to be semi-
Fredholm operator if T is either as upper or a

lower semi-Fredholm operator. Let ¢(X), ¢.(X)

and ¢ (X) denote the classes of Fredholm

operators, upper semi-Fredholm operators and
lower semi-Fredholm operators, respectively.

An operator T is called Weyl if it is a Fredholm
operator of index zero. For

T eBX), let

W.X)={T e¢HX), ind T <0},

W_(X)={Te¢ (X),indT 20}

The class of Weyl operators W(X) := W, (XON'W
_(X)={T e¢(X),ind T=0}.

These classes of operators generate the following
spectra:

The Weyl spectrum

g (T):={AeC:T-AM £¢W(X)},

the upper semi-Weyl spectrum (or Weyl essential
approximate spectrum)

0,(T)={AeC:T-AM ¢W, (X)},

the lower semi-Weyl spectrum (or Weyl essential
surjective spectrum)

0.(T)={AeC:T-M €W _(X)},

obviously g (T) = 0 (T) U 0, (T) and from
classical Fredholm theory we

have

T, (T) = 0,(T*), 0,(T)=6,(T*)

For an operator T € B(X), the ascent is defined as
p :=p(T) =inf{n € N : ker T" = ker T*"'} while the
descentis definedas q :=q(T)=infin eN : T'(X) =
T*'(X)}. If p(T) and q(T) are both finite, then
p(T)=q(T). If0 < p(T —Al) =¢(T —AD) <=, then A
is a pole of the resolvent of T . The class of all
upper semi-Browder operator is defined as

B,(X) :={T €¢.(X) : p(T) < =}, the class of lower
semi-Browder operator in defined as

B (X)={Te¢_(X):q(T) < =x}. The class of all
Browder operators is
B(X)=B.X)nB_(X)={T €¢(X) : p(T) = q(T)
< oo}_

Evidently
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B(X) SW(X), B.X) EW.(X),B_X)EW_(X).
The definitions lead us to the following spectra:
The Browder spectrum

o (T)={AeC:T-M éBX)};

the upper semi-Browder spectrum is de_ned by
O,(T)={AeC:T -A1 ¢€BHX)}

For T e B(X) and a non-negative integer n, define
T, to be the restriction of T to R(T") viewed a map
from R(T") onto R(T") (in particular T,=T ). If for
some integer n the range space R(T") is closed
and T, is an upper (resp, a lower) semi-Fredholm
operator, then T is called an upper (resp, a lower)
semi. B-Fredholm operator. In this case the index
of T is defined as the index of the semi B-
Fredholm operator. Moreover, if Tn is a
Fredholm operator, then T is called B-Fredholm

operator. An operator T € B(X) is said to be a B-
Weyl operator if it is a B-Fredholm operator of
index zero. Let SBF - (X) be the class of all upper
semi-B-Fredholm operator

SBF : (X)={T €SBF,(X):ind (T) <0}

This generates the following spectra:

The upper B-Weyl spectrum of T

Oz (T)={AeC: T~A1 ¢SBF = (X)}

The B-Weyl spectrum
Ou{T)={AeC: T —Al is not B-Weyl operator}.

An operator T eB(X) is called Drazin invertible if
it has a finite ascent and descent. The Drazin

spectrum O,(T) of an operator T is defined by
0,(T) :={A€C: T - Al is not Drazin invertible}.
Define LD(X) := {T e BX) : p(T) < » and
R(Tp(T)+1)is closed} and
oLD(T)={AeC:T-AeLDX)} wesay Acc,(T)
is left pole of Tif T —AI eLD(X) and Ae 0 (T) isa
left pole of T of finite rank if A is a left pole of T
and 0 < a(T —AI) < », Let m°(T) denote the set of
all left poles of T and 18 (T) denote the set of all
left poles of finite rank.

Let (T) be the set of all poles of the resolvent of
T and T°(T) be the set of all poles of the resolvent
of T of finite rank. It is obvious that Ais a pole of T
if and only if Ais both a left and aright pole of T .
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In fact, if A is a pole of T then AI — T is Drazin
invertible, so AI — T is both left and right Drazin
invertible. Moreover A is both left and right pole
of T, since 0 <p(AI - T)=q(Al - T) <= entails
that Aco(T) as well as Ac g (T).

A bounded linear operator T € B(X) is said to be
left polaroid if every isolated point of 0 (T) is a
left-pole of the resolvent of T . T e B(X) is said to
be right polaroid if every isolated point of 0 (T) is
aright pole of the resolvent of T . T e B(X) is said
to be polaroid if every isolated point of g(T) is a
pole of the resolvent of T . A bounded linear
operator T € B(X) is said to be a-polaroid if every
A € iso 0 (T) is a pole of the resolvent of T [2].
Thus,

T apolaroid =T left polaroid

and

T apolaroid =T polaroid.

If T eB(X). Define

E(T) :={Aeiso o(T): 0 <a(T —AD)},

E(T) :={Aeiso 6(T): 0 < a(T —Al) <}.

Then, forevery T eB(X)

m(T) €T(T) CE(T) CE(T) and m(T) <1 5 (T) <
E (D).

We say that Weyl's theorem holds for T if a(T) ~
0, (T) =E(T); generalized Weyl's theorem holds
for T if a(T) ~ G4(T) = E(T); a- Weyl's theorem
holds for T if o0 (T) ~ g (T) = E, 0 (T);
generalized a- Weyl's theorem holds for T , if

g (T) ~ oSBF; (T) = E(T); Browder's theorem
holds for T if o(T) ~ 0 (T) = M0(T); a-Browder's
theorem holds for T if ga(T) ~guw(T) =11,0 (T);
generalized a-Browder's theorem if

g (T) ~oSBF ; (T)=1a(T). Property (w) holds if
a(T) ~0,_(T)=E(T) Property (gw) holds if
0a(T) ~0SBF ; (T)=E(T).

The following property has important role in
local spectral theory [1]

Definition 1.1. Let X be a complex Banach space
and T € B(X). The operator T is said to have the



single valued extension property A,eC
(abbreviated SVEPat A,), if for every open disc D
of A, , the only analytic function f: D - X which
satisfies the equation (AI = T)f{A)=0 for allAcD
is the function f=0.

An operator T € B(X) is said to have SVEP if T

has SVEP at every point A € C. Evidently, T
B(X) has SVEP at every isolated point of the
spectrum. we have

p(AI-T)<w=>Thas SVEPatA, €))

and

q(AI-T) <«=>T*has SVEPatA. )

Furthermore,
0,(T) does not clusterat A>T has SVEP atA, (3)
0,(T) does not cluster at A>T*has SVEPatA(4)

All implication (1)-(4) are equivalent whenever
T —Al is a semi B-Fredholmoperator.

In [4] the property (R) is defined and studied for
bounded linear operator.

Anoperator T eB(X) satis_es property (R) if

M, (T)=E(T). It means T satisfies property (R) if
the isolated points of the spectrum G (T) of T
which are eigenvalues of finite multiplicity are
exactly those points A of the approximate point
spectrum for which AI — T is upper semi-
Browder. It is shown left property (R) is strictly
related to property (w) introduced by Rakocevic
in [13] and more extensively studied in recent
papers ([3], [1]). In this paper our aim is to
introduce property (GR) which in related to
generalized a-Browder's Theorem. We shall
study this property using a localized version of
the single-valued extension property and in the
framework of a-polaroid operators.

2. Property (GR)

We say an operator T € B(X) satisfies property
(GR) if m(T)=E(T) holds.

The next result shows that property (GR) can be
studied as half of the property (gw) in the
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following way:

Theorem 2.1. T satisfies property (gw) if and
only if generalised a-Browder's theorem holds
for T and T has property (GR).

The following example is given in support of
Theorem2.1:

Example 2.2. Let R € B(¢’(N)) be the unilateral
right shift and U defiined by

U, X, .- )=(0, X,, X, . . .), (xn) €€(N).
IfT=R & U then a(T) = D(0, 1) the closed unit
disc in C, iso o(T) = ¢,E(T) = ¢ and 0 (T) = C(0,
1)u{0} where C(0, 1) is unitcircle in C.

oSBF ; (T)=C(0, 1) Thus, 0,(T) ~0SBF ; (T)=
{0} # E(T). Property (gw) and property (GR) are
not satisfied, but T satisfies generalised a-
Browder's Theorem.

Theorem 2.3. If T satisfies property (GR) and
N(T = Al) < = for all Aeiso 0(T), Then T satisfies

property (R).
The following example shows that property (R)
is weaker than property (GR).

Example 2.4. Let T € B(¢’(N)) be the weighted
right shift operator defined by

T(x,, X5 - - ) =(0,X, 0, X5, - - .), fOrallx=(x,,x,, . .
) €€(N) Then 0,(T)={0}, ¢ (T)=¢, E(T)={0}.
Then T does not satisfy property (R). But w(T) =
{0} =E(T). So T satisfies property (GR).

Theorem 2.5. If T eB(X), then

(i) T satisfies property (GR) if and only if E(T)
coincides with the set ofleft poles of T .

(ii) T* satisfies property (GR)iff E(T ) coincides
with the set of right poles of T .

(iii) T satisfies property (GR) then E(T)=11(T)
Proof. (i) and (ii) follow from the definitions

(iii) we know 1T (T) € E(T) for all T € B(X). To
show the opposite inclusion, suppose that T
satisfies property (GR) and let A € E(T) = (T)
then p(T — Al) < ». Since A€ iso O(T), then T*has
SVEP at A [1, Theorem 2.47] and AI-T is upper
semi-Browder and q(AI-T) < «. Thus, Ais a pole

of the resolvent of T . Thus, Ae1T(T). Hence E(T)



=T(T). _The quasinilpotent part HO(T —=AL} of (T
=AlD) of (T —Al) is defined by
H(T-AD={xeX:lim [I(T-Ax]"=0}
Theorem 2.6. An operator T € B(X) satisfies

property (GR) if and only if the following two
conditions hold:

@®(T) Sisoo(T)

(ii) dimH(T —AI) < ofor all AeE(T).

Proof. Let T satisfies property (GR) them E(T) =
Tra(T) Siso 0(T) and by Theorem 2.5 E(T) =
(T). Let Ae m'(T) = A€ iso 0 (T) then using [ 1,
Theorem 2.47], T — Al € ¢-+H(X) and hence by [13,
Theorem 6], dimH(T =AI) <.

Conversely, Let Ae r(T) €iso 0(T) Ciso 0,(T), 0
< a(T = Al),then Tr°(T) CE(T). Let A€ E(T) T has
SVEP at A and using (ii) and [1, Theorem 2.47] A
isaleft pole of T . Thus Ae"(T). Thus, E(T) €1
(.

The following example shows that Weyl's
theorem and property (GR) are independent.

Example 2.7. Let L and R be left shift and right
shift operators on £(N) respectively. Define T=L
@R, then a(T)=B(T)=1 and p(T) =, Therefore,
0 €0 ,(T) but 0 € 0 (T). So Weyl's theorem and
Browder's theorem do not hold for T . On the
other hand o(T)=D(0, 1)so E(T)=¢ and 6 (T) =
0 ,(T) = C(0, 1), the unit circle. Thus m(T)=¢ =
s (T) Hence,E(T) =1*(T) and EQ(T) =17 ¢ (T).
The property (R) and (GR) hold for T .

The following result shows that generalized a-
Browder's theorem with property (GR) entails
generalized a-Weyl's theorem.

Theorem 2.8. If T € B(X) satisfies both
generalized a-Browder's theorem and property
(GR), then T satisfies generalized a-Weyl's
theorem.

Proof. Since T satis _es generalized a-Browder's
theorem and property (GR),

therefore,
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0.(T) ~ G 3 (D) =TP(T)=E(T)=T0(T)

Let A€Og, r and AcE'(T) thenAciso 0,(T)and T
=AMl € ¢.(X), and T* has SVEP at A. Thus 0,(T) =
o(T). Thus E*(T) = E(T). Thus,E*(T) =1°(T). By
[7] generalized a-Weyl's Theorem holds for T .
An operator T is said to have property (gb) if

0,(T) ~Oge 7 (T)=TH(T)

introduced and studied in [11]. The following
examples are given in support of Theorem 2.8.
The following examples show that property (gb)
and (GR) are independent.

Example 2.9. Let T € B(¢’(N)) be the weighted
right shift defined by T(x,, X,, . . .)=(0, X5, X...)
for all {xn} € fz(N)’ O'.(T) =0t (T) ={0}a TI'(T) =
¢. Therefore, 0,(T) ~ G g, = (T) = ¢, T(T) = {0}
=E(T). Then T satisfies property (gb) and

property (GR) but not generalized a-Browders
theorem.

Example 2.10. Let R € B(¢*(N)) be the unilateral
shiftand

R X o) =(00% X i04)

for all (xn) e’(N). If T=R@U , then g(T) =D(0,
1) soiso 0(T)=E(T)=¢. T is polaroid. Moreover,
o (T) = C(0, 1) U {0} where C(0, 1) is the unit
circle. 0,,(T)=C(0, 1). Therefore, 0,(T) ~cub(T)
= {0} =1*(T). But ma(T) #E(T). Thus T satisfies
neither property (gb) nor (GR).

The following result shows if T*has SVEP at
every A € 0 SBF - (T). Then the property (GR),
generalized a Browder Theorem, property (gw)

and property
(gab) are all equivalent.

Theorem 2.11. Let T €B(X) has SVEP at every

A €04 ; (T). Then the following statements are
equivalent:

@) E(T)=T(T)

(i) E(T)="r(T)

(iif) E(T)=1r'(T)

Consequently property (GR), property (gw),



generalized a-Browder's theorem, generalized a-
Weyl's theorem are equivalent for T .

Proof. By [10, Theorem 2.4] we get
0(T)=0(T), Og(T) =gz 2 (T)

and

T(T)=0,(T) ~Ogg (T)

=0(T) ~0,(T)

=1(T)

(D)= (ii) E(T)="(T)=1(T) and E(T) = EX(T).
Thus E(T)=1"(T).

(ii)=(ii)) E(T)=E(T)=m(T) =(T)
(ii))=>@G) E(T) =EY(T)=m'(T).

Dually, we have

Theorem 2.12. Suppose that T has SVEP at
AZ0SBF ; (T). Then the following statements are
equivalent.

(O E(T*)=m(T*);

() E(T*)=m'(T*);

(idi) E(T*)=m'(T*);

Consequently, property (GR), property (gw),
generalized a-Brawder's theorem, generalized a-

Weyl's theorem. are equivalent for T*
3. Property (GR) for Polaroid Operators

This section is devoted to the classes of operators
for which the isolated points of the spectrum are
poles of the resolvent. We know that if T* has

SVEP, then o(T)=0(T)

Therefore,

T apolaroid T polaroid.

If T has SVEP, then

T*apolaroid & T*polaroid < T polaroid.

Theorem 3.1. If T € B(X) is a-polaroid, then T
satisfies property (GR).

Proof. Let Ae°(T) then A€iso 0,(T). Since T is a-
polaroid, therefore Ais a pole of the resolvent and
hence an isolated point of 0(T). Also 0 <a(T —A

{95}

I). Then, AcE(T). Conversely, let AcE(T) then A
€ iso 0 (T) € iso 0 (T). Thus, A is a pole of the
resolvent of T . Hence AeT*(T). Hence

E(T)=1r(T).

The Theorem 3.1 does not hold in case of weaker
condition of being T polaroid. This is shown in
the following example.

Example 3.2. Let R € B(¢’(N)) be the unilateral
right shift defined as

R(x,, X,, . . .) = (0, x,, X,, . .) for all (x,) € £’(N),
and

Uy Xy, - - ) :=(0, X,, X5, . . ) for all (x,) e/(N).
IfT :=R @Uthen a(T) =D(0.1), so iso G(T) = ¢.
Moreover,o,(T)=C(0, 1) u{0}, C(0, 1) is the unit
circle, so iso 0 (T)={0}.p(T)=P(R) +P(U)=1.0
isaleft pole. But q(T)=q(R) + q(U) =.

So T is not a-polaroid, T is polaroid.

E(T) = ¢, T(T) = {0}. Thus property(GR) is not
satisfied.

Let T eB(X) and let feH(a(T)), where if H((T))
is the space of functions analytic in an open
neighborhood of O (T), Such that f is non-

constant on each of the components of its
domain. Define by the classical functional

calculus, f{T) forevery feH(a(T))

Theorem 3.3. Suppose that T € B(X) is polaroid
and feH(a(T)).

(i) If T* has SVEP, the property (GR) holds for
f(T), or equivalently property (gw), generalized
a-Weyl's theorem, generalized a-browner's
theorem hold for f{T).

(ii) If T has SVEP, then property (GR) holds for
f{T*), or equivalently property (gw), generalized
a-Weyl's theorem, generalized a-Browder's
theorem hold for f(T*).

Proof. (i) By [2, Theorem 3.11], f(T) is polaroid
and f(T*) has SVEP [1,Theorem 2.40]. Hence,
f(T) is a-polaroid. By Theorem 3.1 f{(T) has
property(GR). Using Theorem 2.11, property
(gw), generalized a-Weyl's theorem, generalized
a-Broader's theorem hold for f{T).



(ii) We know T*is polaroid and hence f(T*) is
polaroid [2, Lemma 3.11],

f(T) has SVEP [1, Theorem 2.40] and f(T*) is a-
polaroid, By Theorem 3.1,

f(T*) has property (GR). Thus by Theorem 2.12,
property (gw), generalized

a-Weyl's theorem, generalized a-Browder's
theorem hold for f{T*).

References

[1] P. Aiena, Fredholm and Local Spectral
Theory with Applications to Multipliers,
Kluwer Acad. Pub., 2004.

[2] P.Aiena, E. Aponte and E. Bazan, Weyl Type
theorems for left and right polaroid
operator, Int. Equa. Oper. Theory, 66(2010),
1-20.

[3] P. Aiena, J. Guillen and P. Pena, Property (w)
for perturbations of polaroid
operators, Linear Algebra and its Appl.,
428(2008), 1791-1802.

[4] P. Aiena, J. R. Guillen and P. Pena, Property
(R) for bounded linear operators,
Mediter J. Math. (2011), preprint.

[5] P. Aiena and P. Pena, A variation on Weyl's
theorem, J. Math. Anal. Appl.,
324(2006), 566-579.

{96}

[6] P. Aiena and F. Villfane, Weyl's theorem for
some classes of operators, Int. Equa.
Oper. Theory, 53(2005), 453-466.

[7] P. Aiena and T. L. Miller, On generalised a-
Browder's theorem, Studia Math., 180
(3)(2007),285-300.

[8] M. Amouch, Polaroid operators with SVEP
and perturbations of property (gw),

Mediter. J. Math., 6(2009), 461-470.

[9] M. Amouch and M. Berkani, On the property
(gw), Meditor. J. Math., 5(2008),

371-378.

[10]M. Berkani, M. Sarih and H. Zariouh,
Browder type theorems and SVEP, Mediter
J. Math., (2010), 399-409.

[11]M. Berkani and H. Zariouh, New extended
Weyl type theorems, Math. Vasnik,
62(2010), 145-154.

[12]K.B. Laursen and M.M. Neumann,
Introduction to local spectral theory,
Clarendon Press, Oxford, 2000.

[13]V. Rekocevic, On a class of operators, Math.
Vesnik, 37(1985),423-426.

[14]C. Schmoeger, On isolated Points of the
spectrum of bounded linear operators,

Proe Amer. Math, Soc., 117(3) (1993).



